THERMODYNAMICS OF MIXTURES CONTAINING TRIETHOXYMETHANE^{*}

E. JIMENEZ

Departamento de Fisica Fundamental, Facultad de Ciencias, Universidad de Santiago de Compostela, Spain

G. ROUX-DESGRANGES, J.-P.E. GROLIER

Laboratoire de Thermodynamique et Cinétique Chimique. Université Blaise Pascal. F-63177 Aubière, France

EMMERICH WILHELM

Institut für Physikalische Chemie, Universität Wien, Währingerstraße 42, A-1090 Wien, Austria

ABSTRACT

Excess molar volumes VE at 298.15 K were obtained, as a function of mole fraction, for the three binary liquid mixtures triethoxymethane {CH(OC₂H₅)₃, TEOM} + n-heptane, + n-decane and + cyclohexane. The instrument used was a vibrating-tube densimeter. A Picker flaw **calorimeter was used to determine excess molar heat capacities CF at constant pressure for these mixtures at the same temperature. All excess volumes are positive with VE(x = 0.5) = 0.743 cm3.mol-' for the mixture (TEOM + n-heptane), 0.974 cm3.mol -1 for (TEOM + n-decane), and 0.972 cm3.mol-' for (TEOM + cyclohexane). The corres**ponding values for $c_{p}^{E}(x_{1} = 0.5)/(J.K^{-1}$.mol⁻¹) are, in the same sequence, -0.58 , -1.38 and -1.40 . The curves $C_5^E(x_1)$, where x_i is the mole fraction of **TEOM, are all rather** broad.

INTRODUCTION

During the last several years we have investigated systematically selected thermodynamic properties of binary liquid mixtures containing either an ether

004-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.

^{*}Communicated at the "8. Ulmer Kalorimetrietage", Ulm, Germany, 13 to 14 March 1989, Paper No. F16.

or an ester as one component, and a hydrocarbon as the other. l-11 Some of these mono- and polyoxaalkanes (monoethers or polyethers) and alkylalkanoates (esters) are solvents of technical importance, and the mixtures are particularly convenient for testing group contribution models. 12-t5 Perhaps the most interesting aspect is, however, connected with the appearance, in some of these mixtures, of W-shaped curves CF vs. x, i.e. of curves with tie minima. Such a composition dependence - first found for (1,4-dioxane + n-heptane)7 - is now recognized as being of wide occurrence. 8-10,16-25 Against this background it seemed desirable to inquire as to the thermodynamics of mixtures containing a l,l,l-trialkoxyalkane (orthoester) as one component and an alkane as the other. Thus we present here results on excess molar volumes VE and excess molar heat capacities C_p at constant pressure of binary liquid mixtures containing triethoxymethane (triethyl orthoformate, CH(OC₂H₅)₃, TEOM), that is of $\{x_1CH(OC_2H_5)_3 + x_2n-C_2H_{2\ell+2}\}$ with $\ell = 7$ and $\ell = 10$, and of $\{x_1CH(OC_2H_5)_3 +$ **x~c-C~H,~~, all at 298.15 K and atmospheric pressure. Together with previously published data on mixtures of n-alkanes and cyclohexane with ethers and esters, and with as yet unpublished material on mixtures of alkylalkanoates with branched alkanes,26 these results will be instrumental in assessing the influence of polarity as well as of molecular size and shape upon thermodynamic mixing quantities.**

EXPERIMENTAL

The pure liquids, that is triethoxymethane, n-heptane, n-decane and cyclohexane, were all of the best quality available from Fluka (puriss. or purum quality). They were carefully dried with molecular sieve (Union Carbide Type 4A, beads, from Fluka) and used without further purification. Binary mixtures for both VE and Ci determinations were prepared by mass with a possible error in the mole fractions estimated to be less than IO -4 . **All molar quantities are based on the relative atomic mass table of IUPAC, 1986.27**

Densities p were measured with a vibrating-tube densimeter from Sodev (model 02D), which was operated under flow conditions.28 Before each series of measurements the instrument was calibrated with vacuum and doubly distilled and degassed water using $\rho_{H,0}^{\text{O}}(298.15 \text{ K}) = 997.047 \text{ kg.m}^{-3}$ as reported by Kell.²⁹ **From the measured density, \$he excess molar volume of any mixture is obtained according to**

$$
V^{E} = x_1 M_1 (1/\rho - 1/\rho_1^{*}) + x_2 M_2 (1/\rho - 1/\rho_2^{*})
$$
 (1)

where M_i , ρ_i^* and x_i denote, respectively, the molar mass, the density and the **mole fraction of triethoxymethane (i = I) or hydrocarbon (i = 2).**

Heat capacities per unit volume were measured with a Picker flow calorimeter (from Setaram), using the stepwise procedure.^{28,30,31} For all measurements we **used a temperature increment of approximately** 1 **K centered on 298.15 K. The heat capacities per unit volume were converted to molar heat capacities Cp with use of our measured densities. Excess molar heat capacities were then calculated from**

$$
C_P^E = C_P - (x_1 C_{P,1}^* + x_2 C_{P,2}^*)
$$
 (2)

where $c_{\text{P,1}}^{\star}$ is the molar heat capacity of pure triethoxymethane, and $c_{\text{P,2}}^{\star}$ is the molar heat capacity of pure alkane.

For both densimeter and flow calorimeter, temperature control was better than \pm 0.002 K as checked by a quartz thermometer (Hewlett Packard, model **2801 A).**

RESULTS AND DISCUSSION

Experimental results for density and molar heat capacity at constant pressure of the pure liquids are given,in Table 1 along with selected values from the literature. In general, agreement with the literature data is excellent. No published value for $C_{p,1}^*$ of triethoxymethane could be found for comparison.

Results for the excess'molar volumes and the excess molar heat capacities of the mixtures at 298.15 K are given in Table 2, while graphical representations are provided by Figs.1 and 2. For each mixture, the excess quantities were fitted with a smoothing function of Redlich-Kister type, that is

$$
Q^{E} = x_1 x_2 \sum_{i=0}^{k} A_i (x_1 - x_2)^{i}
$$
 (3)

where either $Q^+ = V^-/(\text{cm}^-, \text{mol}^-)$ or $Q^+ = C^-_P/(\text{J.K}^-, \text{mol}^-)$, x₁ is the mole **fraction of TEOM and x2 is the mole fraction of hydrocarbon. The coefficients** A_i and the corresponding standard deviations $s(Q^E)$ are shown in Table 3. These **coefficients were used to obtain the calculated curves in the figures. No literature results could be found for comparison.**

For the mixtures (TEOM + an n-alkane) the dependence of V^E on the chain length *L* of the n-alkane n-C_pH_{2P+2} is as expected, that is V^E increases with **increasing t. The magnitude of the excess molar volumes is similar to that found for corresponding mixtures of n-alkanes with alkylalkanoates of comparable**

TABLE 1 Density ρ^* and molar heat capacity C_p^* at constant pressure of the pure liquids **at 298.15 K**

a) American Petroleum Institute.^{32 b)} Tanaka.^{33 c)} Timmermans,³⁴ interpolated. ^{d)} This value (from Fortier et al.³⁵) was adopted for the n-heptane sample used **as ultimate reference liquid in all our heat capacity measurements. e) Messerly et al 36 f, Grolier et al. 28** .

 $\sin^2 26$ For (TEOM + cyclohexane) $V_{\text{max}}^E = 1.004 \text{ cm}^3 \cdot \text{mol}^{-1}$ at x₁ $_{\text{max}} = 0.4096$, **which is similar to the VEs measured previously' for mixtures of'cyclohexane with alkylalkanoates.**

As concerns the excess molar heat capacities, the curves $C_{{\sf p}}^{{\sf E}}({\sf x_1})$ are quite **broad, which shape is reminiscent of that observed for mixtures of cyclohexane (or n-alkane) with higher members of the alkylalkanoates, such as for (n-propylpropanoate + cyclohexane).' We note that TEOM has a smaller reduced electric dipole moment than propylmethanoate, 37-39 whose mixtures with n-heptane, n-decane and cyclohexane 9,lO all show a W-shaped composition dependence 24,40-43 of CF at 298.15 K. The relative dielectric permittivity (at about 293 K) of TEOM 34** IS . **4.8, that of propylmethanoate 44 is 7.7.**

ACKNOWLEDGMENTS

Financial support received within the frame of the Austrian-French program on scientific and technical cooperation is gratefully acknowledged by E.W. and J.-P.E.G.

103

Fig. 1. Excess molar volumes VE at 298.15 K. Experimental results: A , $\{x_1 \text{CH}(\text{OC}_2\text{H}_5)_3 + x_2 \text{n-C}_7\text{H}_16\}$; (run 1) and \bigcirc (run 2), $\{x_1 \text{CH}(\text{OC}_2\text{H}_5)_3 + x_2 \text{H}_16\}$ x_2 n-C₁₀H₂₂}; **i** (run 1) and \Box (run 2), $\{x_1$ CH(OC₂H₅)₃ + x_2 c-C₆H₁₂). The curves **have been calculated from eqn.(3) with coefficients from Table 3.**

Fig. 2. Excess molar heat capacities C_P^E at 298.15 K. Experimental results: \blacktriangle , $\{x_1CH(OC_2H_5)_3 + x_2n-C_7H_{16}\};$ \bullet , $\{x_1CH(OC_2H_5)_3 + x_2-C_{10}H_{22}\};$ **if** (run 1) and \Box (run 2), $\{x_1CH(OC_2H_5)_3 + x_2c-C_6H_{12}\}$. The curves have been carculated from **eqn.f3) with coefficients from Table 3.**

TABLE₃

REFERENCES

- **1 A. Inglese, E. Wilhelm, J.-P.E. Grolier and H.V. Kehiaian, J.Chem.Thelmo** dyn., 12 (1980) 217.
- 2 A. Inglese, E. Wilhelm, J.-P.E. Grolier and H.V. Kehiaian, *J.Chem.Ther* **dyn., 12 (1980) 1047.**
- 3 A. Inglese, E. Wilhelm, J.-P.E. Grolier and H.V. Kehiaian, *J.Chem.Thermo* **dyn., 13 (1981) 229.**
- **4 M.A. Villamanan, C. Casanova, A.H. Roux and J.-P.E. Grolier, J.Chcm,Eng. Data,27 (1982) 89.**
- **J.-P.E. Grolier, A. Inglese and E. Wilhelm, J.Chem.Eng.Data, 27 (1982) 333.**
- **A. Inglese, J.-P.E. Grolier and E. Wilhelm, J:Chem.Eng.Data, 28 (1983) 124.**
- 7 (a) A. Inglese, E. Wilhelm and J.-P.E. Grolier, 37th Annual Calorimetry Conference, Snowbird, Utah, USA, 20-23 July 1982, Paper No.54. (b) J.-P.E. Grolier, A. Inglese and E. Wilhelm, *J.Chem.Thermodyn.*, 16 (1984) 67.
- 8 A. Inglese, J.-P.L. Grolier and L. Wilhelm, F*luid Phase Equil.,* 15 **(1984) 287.**
- **9 E. Jimenez, L.Romani,** M.I. **Paz Andrade, G. Roux-Desgranges and J.-P.E.** Grolier, *J. Solution Chem.*, 15 (1986) 879.
- **10 M. Pintos, R. Bravo, M.C. Baluja, 14.1. Paz Andrade, G. Roux-Desgranges and J.-P-E. Grolier,** Can.J.Chem, 66 (1988) 1179.
- **11 H.V. Kehiaian, R. Bravo, M. Pintos Barral,** M.I. **Paz Andrade, R. Guieu** and J.-P.E. Grolier, *Fluid Phase Equil.*, 17 (1984) 187.
- **12 H.V. Kehiaian, Betr.6u116eng~.Phgs.Chem., 81 (1977) 908.**
- **13 H.V.** Kehiaian, J.-P.E. Grolier and G.C.Benson, *J.Chim.Phys., 1*5 (1978) 1031.
- **14 H.V. Kehiaian, Pwlc Appt. Chem., 57 (1985) 15.**
- **15 B. Marongiu, S. Dernini, L. Lepori, E. Matteoli and H.V. Kehiaian,** J. Chem. Eng. Data, 33 (1988) 118.
- **16 K. Kimura, P. D'Arcy, M.E. Sugamori and G.C. Benson, Thermochim.Acta 64 (1983) 149.**
- **17 J.-P.E. Grolier and G.C. Benson, Can.J.Chcm., 62 (1984) 949.**
- **18 A. Lainez, G. Roux-Desgranges, J.-P.E. Grolier and E. Wilhelm,** *F&id* Phane **EqLLie., 20 (1985) 47.**
- **19 A. Lainez, J.-P.E. Grolier and E. Wilhelm, Thehmoch.kn.Acta, 91 (1985) 243.**
- **20 A. Lainez, E. Wilhelm, G. Roux-Desgranges and J.-P.E. Grolier,** J.Chem Themodyn., 17 (1985) 1153.
- 21 H. Kalali, F. Kohler and P. Svejda, F*luid Phase Equil.,* 20 (1985) 75.
- **22 G.C. Benson, M.K. Kumaran, T. Treszczanowicz,** P.J. **D'Arcy and C.J. Halpin, Th~ochkn.Ac&, 95 (1985) 59.**
- **23 H. Kalali, F. Kohler and P. Svejda, Monatdh.Chem., 118 (1987) 1.**
- **24 M.-E. Saint-Victor and D. Patterson, F.!?tid P!tasc EquiX., 35 (1987) 237.**
- 25 E. Wilhelm, *Thermochim,Acta, 9*4 (1985) 47.
- **26 E. Jimenez, G. Roux-Desgranges, J.-P.E. Grolier and E. Wilhelm, in pre**paration. Communicated at the 1*0th International Con§erence on Chemica* **Thehmodyntid [IUPAC), Prague, CSSR, 29 August - 2 September 1988, Paper No. 847.**
- **27 IUPAC, Puhe App1.Chem., 58 (1986) 1677.**
- 28 J.-P.E. Grolier, E. Wilhelm and M.H. Hamedi, Ber.Bunsenges.Phys.Chem., 82 **(1978) 1282.**
- 29 G.S. Kell, J.Chem.Eng.Data, 20 (1975) 97.
- **30 J.-L. Fortier and G.C. Benson,** *J,Chem.Themodyn.,* **8 (1976) 411.**
- 31 E. Wilhelm, J.-P.E. Grolier and M.H. Karbalai Ghassemi, Ber. Bunsenges. Phys. **Chem., 81 (1977) 925.**
- 32 American Petroleum Institute, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Carnegie Press, **Pittsburgh, PA, 1953.**
- 33 R. Tanaka, J.Chem, The tmodyn., 14 (1982) 259.
- 34 J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, **Vo1.2, Elsevier, Amsterdam, 1965.**
- **35 J.-L. Fortier, G.C. Benson and P. Picker, J.Chem.Thehmodyn., 8 (1976) 289.**
- 36 J.F. Messerly, G.B. Guthrie, S.S. Todd and H.L. Finke, J.Chem.*Eng.Da*; **12 (1967) 338.**
- 37 C.N. Caughlan, W. Katz and W. Hodgson, J.Amer.Soc., 73 (1951) 5654.
- 38 A.L. McClellan, *Tables of Experimental Dipole Moments*, Freeman, San **Francisco and London, 1963.**
- 39 A.L. McClellan, Tables of Experimental Dipole Moments, Vol.2, Rahara **Enterprises, El Cerito, CA, 1974.**
- 40 E. Wilhelm, G. Roux-Desgranges and J.-P.E. Grolier, *Calonim. Anal. Therm.*, **17 (1986) 12.**
- **41 E. Wilhelm, A. Lainez, M. Rodrigo, A.H. Roux and J.-P.E. Grolier, C&ti.An&.Th~., 19 (1988) C20.1.**
- 42 E. Wilhelm, Thermochim_sActa, in press (1989).
- 43 E. Wilhelm, A. Lainez and J.-P.E. Grolier, *Fluid Phase Equil.*, in press(1989).
- 44 J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, 4th edition, Wiley, New York, 1986.